Überblog Dev Doc

10/19/2004

Überblog Project Design Documentation

Contributors:

Russell Hay
Release Information

Basic Information

Release vX.X.X, YYYY MMM DD – YYYY MMM DD
Summary

This release will incorporate the following features:

· ITEM

· ITEM

· ITEM
Status

This release is currently in the design phase.

Table of Contents

2Release Information

2Basic Information

2Summary

2Status

3Table of Contents

5Project Overview

5Mission and Scope

5Status

6Project Proposal

6Background and Motivation

6Goal

7Scope

7Deliverables

7Risks and Rewards

7Project Plan

8Target Audience and Benefits

8Target Audience

8Benefits to Customers

8Potential Downside

9Statement of User Needs

9Agreed Goals

9Environment

9Stakeholders / Actors

9Notes from Interviews and Brainstorming

9User Stories

9Performance and Capacity Needs

10Project Plan

10Summary of Project

10Summary of Methodology

11Work breakdown Structure and Estimates

11Deliverables in This Release

11Schedule for This Release

11Risk Management

11Project Planning Dependencies

12Features

13Software Requirements

13Introduction

13Use Cases

13Functional Requirements

13Non-Functional Requirements

14Environmental Requirements

15Feature Set

15Features by Release and Priority

15Features by Release and Risk

15Features by Functional Area

16Use Cases

16Use Cases by Functional Area

16Use Cases by Stakeholder

16Use Cases by Priority

16Use Cases by Business Object and Actor

17Design

17Introduction

18UML Structure Design

18Diagrams

18Additional Notes

19UML Behavioral Design

19Diagrams

19Additional Notes

20UML Checklist

21Architecture

21Overview

21Components

21Deployment

21Integration

22Architectural Scenarios

22Architectural Checklist

23Source Code Organization

23Overview

23Key Directories and Files in Developer Working Copy

23Source Code Organization Checklist

24User Interface

24Overview

24Metaphors, Exemplars, and Standards

24Task Models

24Content Model / Interaction Context

24Technical Constraints / Operational Contextualization

24User Interface Checklist

25Persistent Data Design

25Overview

25Central Database

25File Storage

25Distributed Storage

25Persistence Mechanisms Checklist

26Security Design

26Overview

26Security Mechanisms

26Security Checklist

27Quality Assurance Plan

27Introduction

27Quality Goals for release

27Quality Assurance Strategy

27Quality Assurance Strategy Evaluation

27Plan of Action

28QA Plan Checklist

29Test Suite

29Test Cases by Business Object and Operation

29Test Cases by Feature Priority

29Test Cases by Use cases

30Appendix A – Feature Specification Format

Project Overview

Mission and Scope

What problem does this project address?
The lack of grace and refinement in current blogging scripts written in PHP is non-existent. This project fulfills the desire for a graceful XHTML compliant blog application.

What is the goal of this project?

The goal of this project is to create an XHTML complaint blog application which utilizes a designed URL name space which is not application specific, and search engine friendly. Also, the application must support photoblogging and photo gallery creation and linking to entries.
What is the scope of this project?

This project is to create UberBlog, the best blogging software.

What development methodology is being used?

See SOFTWARE DESIGN METHODOLOGIES.

Where would a new team member start?

For more information, see PROJECT PROPOSAL.

Status

We are currently in the design phase of the project.

Project Proposal

Background and Motivation
What is the setting and history behind this project?

While the beginning of blogging cannot be pinpointed to a specific time, the term “weblog” and subsequently “blog” started in Dec 1997 when Jorn Barger coined the term “weblog”. Later it was shortened to “blog”, and a community sprang up. From there came millions of blogs of all types, and companies to provide the blogging service. Google’s BlogSpot (Blogger) and Livejournal being the two biggest. Both are mostly free.

What is the problem to be addressed?

While there are many different blogging scripts out there, most of them are clunky, kludged-together scripts tightly tied to a specific application. They make migration to a different blog-system almost impossible, because so many URLs will disappear, because the namespace is tied to the specific script. The main problem being addressed is this namespace misuse.

What are some current approaches to this problem?

Most blogging scripts will use some form of unintelligible URL scheme which is strongly tied to the implementation of the script.
Why is this problem worth solving?

Everyone has gone to a website, clicked on a link, only to find that it no longer exists. This leads to frustration and often the information is lost.

How will this product be better than previous approaches?

By designing the name space first, before implementation, this should alleviate changing URLs because implementation was changed. By doing this, the URL becomes a Persistent globally unique identifier for the information, suitable for referencing and citation.

Where is there more information on this problem?

· http://www.w3.org/Provider/Style/URI.html
Goal

What is the goal of this project?
This project will produce a blog engine that has a clean namespace, is compliant to current web standards, modular to allow for future expansion, and support advanced blog features.

What are the defining features and benefits of this project?

· Reusable blog engine which utilizes a clean namespace, allows for creating, managing, editing, and advertising multiple blogs on a single system.

· The engine will allow modules to be loaded to add advanced features such as Photoblogging, Mobblogging via Email, MMS, SMS, and voice calls.
· The engine will output web standard compliant data, with no “bad” HTML being outputted.

· The engine will be secure as secure as possible against spam, and clear-text passwords.
Scope

The focus of this project is to create the engine. Once the engine is created, we will also run our own blog system on loggerblogger.net as a free service for those we want to include on the system.

See the CONTEXT DIAGRAM.

Deliverables

· Blog Engine

· Administration Documentation for deployment of engine on a separate system

· Sample “skin” for blog customization

· End-User Documentation for using the blog, including context-sensitive help which is installed with the blog.

· Blog site on loggerblogger.net
Risks and Rewards

What are the main risks of this project?
None are known at this time. More brainstorming is needed.

What are the main rewards of this project?

If this plan is executed fully, we will have contributed something great, and could possibly be given recognition in the community as an advancement in the blogging technology.
Project Plan

See PROJECT PLAN and RESOURCES NEEDS.
Target Audience and Benefits

Target Audience

What market segment is this project in?

PHP-based blogging scripts that run under apache, and utilize advanced web standards like XML, XHTML, CSS.

What is the target market for this product? Include specific defining characteristics.

Online journalists and blogging service providers looking for an intelligent code base for blogging.

What is the size of the total available market? Cite reference for facts.

User base numbers are currently not researched.

What are some other customer options or leading products that address the same needs?

· Blogger (http://blogspot.com)

· Livejournal (http://livejournal.com)

· Movable Type (http://movabletype.org)

· Do-It-Yourself Solutions

Are there any known customers for this product?

None at this time.

Benefits to Customers

· Designed Namespace

· Allows for easy references

· Allows for clear search engine adjustments

· Web Standard Compliance

· Cross-Browser Compatible

· Future-Forward design, allowing for new standards

· Advanced Features

· Support for Mobblogging (MMS Proxy?, email posting, possibly voice posts)

· Support for photoblogs
Potential Downside

· Long URLs due to designed namespace.

· Feature rich, requiring a beefy machine to run.
Statement of User Needs
Agreed Goals
We were given an INITIAL PROJECT DESCRIPTION that is agreed to by all stakeholders
Environment

What is the system’s business environment?

· Each blogger will have access to multiple blogs to which they can post.
· Each blogger will own one or more blogs that allow them to manage the blog.

· Each System will have a composite blog which lists entries from all other blogs.
What is the system’s physical environment?

The system will run on any version of UNIX that can support PHP, MySQL, and Apache.
What is the system’s technology environment (hardware and software)?

The current dev box is running FreeBSD 5.2.1-p8, Apache 2.0.50, PHP 4.3.8_2, MySQL 4.1.3-Beta. The hardware is a 1Gz Athalon on ASUS-A7V333, with 512 MB PC133 RAM. Storage currently consists of multiple drives including a 150GB hard drive mounted for /usr and a 30GB Raid for /www.
Stakeholders / Actors

· Open Source Community
· Developers
Notes from Interviews and Brainstorming

None at this time.
User Stories

None at this time.
Performance and Capacity Needs

None at this time.
Project Plan

Summary of Project

The project will consist of the following modules
· Engine – Core engine which loads other modules, and handles interaction with user

· Admin – Handles the administrative tasks like creating blogs, adding users to blogs, security and user management

· Modules
· Photoblog – Handles the creation and management of a photoblog entry. Includes the ability to create galleries for specific events.

· Mobblog – Handles receiving blog entries from Camera Phones, Email, and voice.

· Skinning Engine – Handles the template system for displaying information. This should be completely separate from the base engine to allow us to support multiple template systems.
Summary of Methodology

What general development approaches will be used?
To be Determined

How will the project team be organized?

Currently the development team will consist of Russell Hay and various other developers to be determined once they are found.

Currently the change request board will consist of Russell Hay. Others may be appointed at a later date.
What development and collaboration tools will be used?

We plan to use the following tools extensively through out the project:

· Project website at SourceForge

· Mailing Lists to be determined at a later date

· SourceForge issue tracker for tracking bugs, support requests, etc.

· CVS on SourceForge and SVN on b0b.net for version control. CVS will be used for public releases, and SVN will be used for development, non-stable releases.

How will changes be controlled?

· Requests for change will be submitted via SourceForge Issue tracker.

· Once submitted, the change request board will review and assign to a release, or deny addition based on review.
Work breakdown Structure and Estimates

To be determined.
Deliverables in This Release

To be determined.
Schedule for This Release

To be determined.
Risk Management

To be determined.
Project Planning Dependencies

This project does not depend on any other project to be completed first.

Features
Keep official Feature list here, format needs to be developed
Software Requirements

Introduction

Copy text from the project proposal, or refer with a link to the proposal.

Use Cases

Briefly describe use cases, and include either links to use cases or UML diagrams of use cases.

Functional Requirements

Overview paragraph here. Detailed features list following.

Non-Functional Requirements

What are the usability requirements?

List what usability requirements we have for this release. Include any requirements we are trying to satisfy (government requirements for usability, etc)

What are the reliability and up-time requirements?

The software must handle all errors gracefully by informing the web client that an error has occurred and how to fix the error. At no time should the web client be given a “standard apache error message”.

A site should be up 99% of the time. The only time the system must be made unavailable is during an upgrade, to protect the integrity of the database.
What are the safety requirements?

We must provide a COPPA-compliant registration scheme that denies underage people from registering. This must be tunable so that individual site administrators can turn this off.

What are the security requirements?

List authentication scheme, encryption standards, and other requirements of the authentication system.

What are the performance and scalability requirements?

List performance requirements, as we develop them

What are the maintainability and upgradability requirements?

The system must be organized in a way to allow for easy bug fixes, quick daily administrative tasks and be easily upgraded from version to version. Changes to the database structure must only consist of adding from version to version. We must not delete a field or table. Major version upgrades can redesign the database, but must include a conversion tool that converts the current database into the new database design.

What are the business life-cycle requirements?

The software will be supported and continually improved through the open source community. The product will never be retired as long as there is active interest in the project.

Environmental Requirements

What are the system hardware requirements?

The system should run on any fairly modern hardware. Individual requirements for hardware depend on site installation. Minimal hardware specifications will be determined through stress testing.

What are the system software requirements?

The system requires the following things:

· Apache, any version that can run PHP will work, though 2.x version if preferred, and assumed.

· PHP, minimum version will be determined once written, but we are currently using 4.3.8, so this is the target version currently.

· MySql, any version will work. We are not using version specific SQL statements at this time.

What application program interfaces must be provided?

We will implement all XML-RPC APIs for blogging software. The current list is as follows:

· Moveable Type

· Livejournal

· Blogger

What are the data import and export requirements?

Data is all stored in a MySQL database, so we have no external import and export requirements. Backups will be handled via mysqldump.

Feature Set

Features by Release and Priority

Include a full list of all features and when they are planned. There will be a master document of this, and this will just be a copy of that data as it stands when this release was frozen.

Features by Release and Risk

See above explanation of what goes here

Features by Functional Area

See above explanation

Use Cases

Use Cases by Functional Area

See the above explanation. Link to use case diagrams

Use Cases by Stakeholder

See the above explanation

Use Cases by Priority

See the above explanation

Use Cases by Business Object and Actor

See the above explanation
Design
Introduction

How is this design section organized?
This section is explains the main system design at a high level. It describes modules, packages, and functional units. Additional information can be found in the APPENDIX for various worksheets that will be attached.

What are the most important facts that a developer should know about this design?

The most important aspect of the design is that it’s completely object oriented. Though we are using PHP4 to implement the system, it follows a strict object-oriented approach with information hiding and encapsulations. There are major packages which are wrapped around the individual classes that implement the system. Only the external interfaces to these packages will be made available to classes outside of the package.

What are the prioritized goals of this design?

· Correctness

· Feasibility

· Understandability

· Implementation Phase Guidance

· Modularity

· Extensibility

· Testability

· Efficiency
UML Structure Design

Diagrams
The system’s structural design is described in the following UML structural diagrams

(hierarchy list of links to the diagrams)

Additional Notes

UML Behavioral Design

Diagrams
See previous Diagrams section

Additional Notes

UML Checklist

Correctness: How do you know that this design is correct?

Answer

Feasibility: What indicates that this design can be implemented and tested with the planned amount of time and effort?

Answer

Understandability: What makes this design understandable?

Answer

Implementation Phase Guidance: Does the design suggest reasonable implementation tasks?

Answer

Modularity: How have concerns been separated and addressed in distinct modules?

Answer

Extensibility: How can new features be easily added in the future?

Answer

Testability: What makes this system easy to test?

Answer

Efficiency: Does the system consume an acceptable amount of time, storage space, bandwidth, and other resources?

Answer

Has the design been communicated to the development team and other stakeholders?

Answer

Architecture

Overview

What are the most important facts that a developer should know about this system architecture?

Answer

What software architecture style is being used?

Answer

What are the ranked goals of this architecture?

Answer

Components

What are the components of this system?

The components (packages) of this system are listed below by type:

Deployment

How will the components be deployed to processes and machines?

The deployment of components to processes and machines is clearly defined below:

What aspects/resources of their environment are shared?

Everything is on a single machine so all machine resources are shared.

How are requests allocated to redundant or load-balanced servers?

This is beyond the scope of this project. Load-balancing is the site administrator’s responsibility.

What alternative deployment configurations are possible?

While we utilize an all-in-one server, the MySQL database server could easily be moved to another machine, as long as the network can handle the requests.

Integration

How will components be integrated? Specifically, how will they communicate?

All components are brokered by the main engine. This engine is responsible for calling out to specific modules, and handles all of the communication via function calls and callback functions.

What architectural mechanisms are being used to ease future extensions or modifications?

All of the functionality, outside of the core engine, is implemented in loadable modules that can be configured on a per site basis. This allows for 3rd party modules to be added in, and updates to specific modules to be applied, without needing to upgrade the core engine.

Architectural Scenarios

The following sequence diagrams give step-by-step descriptions of how components communicate during some important usage scenarios:

Architectural Checklist

List goals and answer if they have been satisfied with justification.

Has the architecture been communicated to the development team and other stakeholders?
Source Code Organization

Overview

What are the most important facts that a developer should know about the organization of the source code?

Brief summary of source code layout

What are the ranked goals of this source code organization?

Answer

Key Directories and Files in Developer Working Copy

List each file and whether it’s in version control and a description. Update as new files and directories are added.

Source Code Organization Checklist

List each goal, and how it’s been accomplished

Have these implementation decisions been communicated to the developer team and other stake holders?

Answer
User Interface

Overview

Metaphors, Exemplars, and Standards

Task Models

Content Model / Interaction Context

Technical Constraints / Operational Contextualization

User Interface Checklist

Persistent Data Design

Overview

Central Database

File Storage

Distributed Storage

Persistence Mechanisms Checklist

Security Design

Overview

Security Mechanisms

Security Checklist
Quality Assurance Plan

Introduction

Why is this QA Plan needed?

"Quality" refers to all the good things that we would like to see in our product. We build a quality product and assure its quality by keeping quality in mind all the time and performing the selected activities below. Testing is one QA activity, but it is not the best or only one, other QA activities include the use of style guides and checklists, review meetings, use of analysis tools, and careful quality measurements and estimates. A plan is needed to select and coordinate all the QA activities.
What is the scope of this QA Plan?
All packages of this system will be evaluated in every release.

What is the summary of this plan?

In this release, we will begin testing every aspect of the software. This will include a beta test on loggerblogger.net, to give real world testing before release. We will also use automated testing using PHPUnit for unit testing. After each commit to CVS the unit tests will be run to verify functionality of the checked-in code.
Quality Goals for release

List breakdown of Quality Goals for this release. Break into Essential, Expected, and Desired categories.

Quality Assurance Strategy

This should be a chart of Activity, Coverage/Frequency, and Description for QA processes.
Quality Assurance Strategy Evaluation

This should be a chart of Effect each activity has on each goal for quality. The overall assurance of a quality goal is determined by the individual activities.

Plan of Action

Plan outline describing every step of the QA process.

QA Plan Checklist

Do the selected activities in the QA Strategy provide enough assurance that the project will meet its quality goals?

Answer

Have human resources been allocated to carry out the QA activities?

Answer

Have machine and software resources been allocated as needed for the QA activities?

Answer

Has this QA Plan been communicated to the development team and other stakeholders?

Answer

Test Suite

Test Cases by Business Object and Operation

Spreadsheet of BO and Operations, and test cases

Test Cases by Feature Priority

Outline

Test Cases by Use cases

Outline

Appendix A – Feature Specification Format
Embed Feature Spec form that is used to submit official forms to the change request board.
PAGE
30
Document Revision: 1.0

